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Short-Step Chebyshev Impedance Transformers

GEORGE L. MATTHAEI, FELLOW, IEEE

Absfract—Impedance transforming networks are described which

consist of short lengths of relatively high impedance transmission

line alternating with short lengths of relatively low impedance line.

The sections of transmission line are all exactly the same length

(except for corrections for fringing capacitances), and the lengths of

the line sections are typically short compared to a quarter wavelength

throughout the operating band of the transformer. Tables of designs
are presented which give exactly Chebyshev transmission character-
istics between resistive terminations having ratios ranging from
1.5 to 10, and for fractional bandwidths ranging from 0.10 to 1.20.
These impedance-transforming networks should have application

where very compact transmission-line or dielectric-layer im-
pedance transformers are desired.

1. GENERAL

T

ABLES OF Chebyshev impedance-transformer

designs of lumped-element, low-pass-filter form

are presented in [1]. The structures used consist of

a ladder configuration of series inductances alternating

with shunt capacitances. The transmission character-

istic typically gives a sizable mismatch at dc, followed at

somewhat higher frequencies by a Chebyshev pass band

where the attenuation is very low, and at the upper edge

of the pass band, the transmission characteristic cuts off

in a manner typical of low-pass filters. It was also noted

in [1] that by techniques such as are used for designing

semi-lumped-element microwave filters [2], [3], it is

possible to design semi-lumped-element impedance-

transformers from the tables in [1]. Such procedures

are approximate but can give very good results if the

design is carefully worked out. Microwave semi-lumped-

eIement transformers of this type give performance

comparable to that of quarter-wave transformers, but

can be much smaller in size.

In this present discussion, the design of semi-lumped-

element impedance transformers consisting of short

sections of transmission line is treated on an exact basis.

Figure 1 shows a six-section transformer of the type
under consideration. In this particular case the structure

is of coaxial form, and it consists of a cascade of line

sections having various impedances, each line section

having the same effective length 1. Such a transformer
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will give a good match between the line impedances ZO

and Z7 over a band of frequencies as indicated by the

transducer attenuation characteristic shown in Fig. 2.

The length 1 of the line sections in Fig. 1 is considerably

less than h~/4, where Am is the wavelength at the mid-

band frequency. This is also evident in Fig. 2, where it

will be seen that at the midband frequency of the lowest

pass band, the electrical length fl~ of the line sections is

considerably less than 7r/2. Unlike conventional quarter-

wave transformers, this type of impedance transformer

has maximum attenuation when the line sections are a

quarter-wavelength long i.e., when 0 = Tr/2). The attenu-

ation characteristic in Fig. 2 is periodic and has a maxi-

mum attenuation of L~l. This differs from the lumped-

element case discussed in [1], where the attenuation

characteristic is not periodic and the attenuation ap-

proaches infinity at high frequencies.

An interesting situation occurs when the length 1 of

the line sections is chosen to be A~/8. In that case, 19~ is

Tr/4, and for example, in Fig. 1, 21 = 22, Z3 = 24, 26’26.

The significance of this is that under this condition a

Chebyshev short-step transformer becomes identical

with a conventional Chebyshev quarter-wave trans-

former having half as many line sections. Thus, in order

to have the up and down variation of line impedances as

suggested in Fig. 1, 1 must be less than A~/8. The tables

presented herein are for the case where 1 = Am/l 6, and

results are given elsewhere for the case where 1=&/32

[15 ]. Tables for quarter-wave transformers (which as

explained above are equivalent to the case of 1= AJ8

herein) will be found in [4].

1 I. RESPONSE PARAMETERS

Let us now define various parameters for the response

characteristic in Fig. 2. Electrical length 0 will be used as

a frequency variable, where O is the electrical length of

each individual line section of the short-step trans-

former. The center frequency of the primary pass band

is defined by

& + eb 27rl
em=—

2 ‘x’
(1)

and the fractional bandwidth of the pass band is given by

ob – %
~=—

Om
(2)
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Fig. 1. A coaxial short-step impedance transformer designed to
match between lines of impedance ZO and Z7. The sections of im-
pedance Z1 to ZS are all of the same effective length 2.

ELECTRICAL LENGTH, o — rod,.”,

Fig. 2. The response characteristics of a typical short-step trans-
former. The Darameter o is the electrical length of each of the line
sections (see&Fig. 1).

where O. and f% are defined in Fig. 2. The attenuation

LM. at dc can be computed by

(?’+ 1)’ ~B
~.idc = 1010glo ‘~ (3)

where r is the ratio of the terminating line impedance

Zn+l to the input line impedance 20.
~Tormalizingthe line impedances so that Zo = 1 and

Zfi+l = r, the peak attenuation LAI can be computed by

the formula

LA, = ,(),Og,O ‘1 + ‘in)’: dB
4Rin

(4)

where for n/2 even

r(zlz3 . . . zm/2_l)4
Rin =

(Z2Z, . . . z.,2)’–
(5)

and for n/2 odd

Rin = ‘2123 “ “ “ ‘“’2)E ~ (6)
S’(Z2Z4 . . . 2.,,-,)’

Values for the normalized impedances ZI to Z~lZ are
listed in the tables accompanying this discussion.

Another important parameter of the response in Fig. 2

is the pass band attenuation ripple LA,. Values of LAr are

tabulated in Tables I through V for the various designs

which are tabulated in Tables VI through X. These data

are for the case where the line sections in Fig. 1 are

1=LJ16 in length. The Tables of LA, values are of

primary importance in determining which design should

be used for a given application. Assuming that 1=&/1 6

is desired, for the desired termination ratio r and frac-

tional bandwidth w, the corresponding value of LAr for

the n = 2 section case in Table I should be checked. If

this value of ripple is too large, then the table for n = 4

should be checked to see if n = 4 will result in a suffic-

iently small value of pass band ripple. If n = 4 still

gives too large a value of LA,, then n = 6 should be tried,

etc. In this manner the tables of LA, vs. r and w are used

to determine the number of line sections required in

order to give a sufficiently good degree of impedance

match across the desired operating frequency bancl.

The entire response of a given short-step transformer
design can be computed by use of the mapping tech-
niques discussed in Section V of this discussion. ‘l~his

may be of interest for cases where the regicms of high

attenuation in the response characteristic of a short-step

transformer are to be used for the purpose of filtering out

unwanted signals. The attenuation in the stop bands can

be very large. For example, for the case where 1=kJ16,

if n = 6 and r =5, the peak stop band attenuation L.41

runs about 45 dB for the entire range of w coverec[ by

the tables. If the line-section lengths are 1=&/32, n =6,

and r =5, then the peak attenuation LAI runs about

83 dB for all the values of w covered by the tables.



374 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES AUGUST

TABLE I

LA, vs. r ANII w FOR n=2 AND l=&~16

\

w
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

r

1.5
2.0
2..5

R
5.0
6.o
7.0
8.0

1);

0.0016 0.0064 0.0141 0.0243 0.0502 0.0798
0.0049

0.1088
0.0191 0.0421 0.0724 0.1490

0.1342
0.2352 0.3187

0.0087 0.0344 0.0755
0.3906

0.1295 0.2645 0.4146 0.5578
0.0129 0.0509 0.1113

0.6797
0.1905

0.0218
0.3864 0.6009 ;; ;;3:

0.0855 0.1862
0.9725

0.3168 0.6334 0.9705
0.0310 0.1211 0.2625

1.5336
0.4439 0.8754 1.3230

0.0403
1.7239 2.0475

0.1570 0.3388 0.5695 1.1085 1.6545 2.1338
0.0497 0.1930 0.4145

2.5146
0.6928 1.3319 1.9655 2.5119 2.9403

0.0591 0.2289 0.4894 0.8134 1.5456 2.2573 2.8616
0.0686

3.3302
0.2647 0.5632 0.9312 1.7501 2.5319 3.1866

0.0780
3.6894

0.3003 0.6361 1.0462 1.9459 2.7908 3.4898 4.0220

TABLE II

LA, vs. r AND w FOR n=4 AND J=A~/16

\ !

\

w
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

f’

TABLE III

LA, vs. r AND w FOR n=6 AND l=km/16

\

w

v

1.5
2.0

::2
4.0
5.0
6.0

:::

1;::

0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0001
0.0001
0.0002
0.0002
0.0002
0.0003
0.0003

0.0015
0.0017

0.0004
0.0012
0.0021
0.0031
0.0053
0.0075
0.0098
0.0121
0.0144
0.0168
0.0191

0.0022 0.0087
0.0067

0.0254
0.0259 0.0758

0.0121 0.0465 0.1354
0.0179 0.0688 0.1992
0.0302 0.1154 0.3310
0.0430 0.1632
0.0558

0.4635
0.2113 0.5943

0.0688 0.2594 0.7225
0.0818 0.3072 0.8478
0.0949 0.3547 0.9700
0.1079 0.4018 1.0892

TABLE IV

LiI, vs. r AND w FOR n=8 AND 1=?,J16

\

w

0.1 0.2 0.3 0.4 0.6 0.8 1.0
r

1.2

1.5
2.0
2.5

:::
5.0
6.0
7.0

n
10.0

0.0000
0.0000
0.0000
0,0000
0.0000
0.0000
0.0000
0.0000
0 s 0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000 0.0000
0.0000 0.0000
0.0000 0,0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0001
0.0000 0.0001

0.0000 0.0003 0.0020 0.0090
0.0001 0.0010 0.0061 0.0269
0.0002 0.0018 0.0110 0.0483
0.0003 0.0026 0.0163 0.0713
0.0004 0.0045 0.0274 0.1197
0.0006 0.0063 0.0389 0.1692
0.0008 0.0083 0.0506 0.2191
0.0010 0.0102 0.0624 0.2689
0.0012 0.0121 0.0742 0.3184
0.0014 0.0141 0.0860 0.3675
0.0016 0.0160 0.0978 0.4162
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TABLE V

LA, vs. r AND w FOR n=10 AND l=&J16

\

w

0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.:1
7

M
:::
4.0
5.0
6.0

R
9.0

10.0

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005
0.0000 0.0000

0.0031
0.0000 0.0000 0.0000

0.0000 0.0000
0.0001 0.0014 0. 00!)2

0.0000 0.0000 0.0000 0.0003 0.0025 0.0165
0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0038 0.0245
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000

0.0007 0.0064
0.0000 0.0000

0.041[3
0.0000 0.0001 0.0009 0.0090 0.0586

0.0000 0.0000 0.0000 0.0000 0.0001 0.0012 0.0118 0.0761
0.0000 0.0000 0.0000 0.0000 .: 0.0001 0.0015 0.0145 0.0937
0.0000 0.0000 0.0000 0.0000 , ‘. ‘“ 0.0001 0.0018 0.0173 0.1114
0.0000 0.0000 0.0000 0.0000 k 0.0001 0.0021 0.0201 0.12’91
0.0000 0.0000 0.0000 0.0000 -y’& 0.0001 0.0023 0.0229 0.1467

—

TABLE VI

Z, vs. r AND w FOR n=2 AND 1=LJ16

Y

w
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1,2

r

1.8317
2.4782

1.8271
2.4709
2.9911
3.4366
4.1907
4.8297
5.394’1
5.9050
6.3752
6.8131

1.8196
2.4590
2.9760
3.4189
4.1687
4.8042
5.3655
5.8736
6.3412
6.7767

1.8094
2.4426
2.9552
3.3946
4.1385
4.7692
5.3262
5.8304
6.2945
6.7268

1.7814
2.3978
2.8982

1.7452
2.3393
2.8238
3.2403
3.9468
4.5463
5.0761
5.5559
5.9975
6.4089
6.7954

1.7033
2.2707
2,7361

1.6579
2.1956

3.0002
3.4473
4.2040
4.8452
5.4114
5.9240
6.3958
6.8351

2.63’96
3.0233
3.6761
4.2312
4.7222
5.1670
5.5766
5.9583
6.3170

3.3277
4.0555
4.6728
5.2180
5.7117
6.1661
6.5893

3.1371
3.8183
4.3968
4.9082
5.3715
5.7980
6.1953
6.5686

6.0
7.0
8.0
9.0

10.0 7.2479 7.2245 7.1860 7.1329 6.9870

TABLE VII-A

Z, VS. ?’ AND w FOR n=4 AND 1=LJ16

\

w

0.1 0.2
r

1.7831 1.7864
;:; 2.1446 2.1508
2.5 2.4008 2.4097
3.0 2.6037 2.6151
4.0 2.9205 2.9366
.5.0 3.1679 3.1883

0.3 0.4 0.6 0.8 1.0 1.2

1.7918
2.1610
2.4244
2.6340
2,9633

1.7993
2.1752
2.444.8
2.6603
3.0006
3.2700
3.4961

1.8194
2.2142
?.5016
2.7340
3.1062
3.4056

1.8440
2.2643
2.5759
2.8316
3.2481
3.5893

1.8864
2.3658
2.7356
3.04’77
3.5717
4.0142
4.4049
4.7589
5.0853
5.38!)8
5.6764

3.2223
3. 4.?866.0 3.3731 3.3976

7.0 3.5498 3.5783
8.0 3.7058 3.7379
9.0 3.8458 3.8816

10.0 3.9732 4.0126

3.6603
3.8846
4.0864
4.2711
4.4420

3.8841
4.1469
4.3860
4.6069
4.8131

3.6258 3.6928
3.7919 3.8679
3.9418 4.0266

4.4547
4.7379
5.0013
5.24854.0788 4.1722

TABLE VII-B

Zz VS. ?’ AND w FOR %=4 AND l= Am/16

\ ‘< 0“1 0“2 0.3 0.+ 0.6 0.8 1.0 1.2

;::
2..5
3.0
4.0
5.0

0.5295
0.5214
0.5335
0.5494
0.5817
0.6115
0.6385
0.6631
0.6856
0.7064
0.7257

0.5312
0.5240
0.5369
0.5534
0.5871
0.6182
0.6463
0.6720
0.6956
0.7174
0.7378

0.5337
0.5277
0.5416

0.5410
0.5386
0.5557

0.5523
0.5547
0.5763

0.5682
0.5768
0.6041
0.6343
0.6936
0.7486
0.7996
0.8471
0.8917
0.9339
0.974’0

0.5895
0.6049
0.6388
0.6753
0.7463
0.81;!1
0.8732
0.9302
0.9838
1.0346

0.5592
0.5947
0.6276
0.6574
0.6847
0.7099
0.7332
0.7550

0.5762
0.6173
0.6554
0.6902
0.7222
0.7520
0.7798
0.8060

0.6011
0.6502
0.6957
0.7377
0.7766
:; ;;;:

0.8797

6.0

i::
9.0

10.0 1. 08:!9
—
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TABLE VIII-A

Z1 VS. i’ AND W I?OR n=6 AND l=bJ16

\

w
0.1

r
0.2 0.3 0.4 0.6 0.8 1.0 1.2

1.6006
1.822’7
1.9740
2.0907
2.2680
2.4027
2.5125
2.6057

1.6273
1.8662
2.0315
2.1602
2.3584.
2.5112
2.6371
2.7450

1.5
2.0

1.5814
1.7916
1.9334
2.0419
2.2051
2.3279
2.4271

1.5851
1.7977
1.9414
2.0514
2.2173
2.3424
2.4436
2.5290

1.5915
1.8080

1.6663
1.9312
2.1180
2.2660
2.4978
2.6801
2.8329
2.9657

1.7184 1.7817
2.1317
2.3931
2.6090
2.9633
3.2564
3.5118
3.7410
3.9509
4.1459
4.3287

2.0199
2.2384
2.4148
2.6974
2.92.53

2..5
3.0
4.0
5.0

1.9548
2.0676
2.2381
2.3671
2.4718
2.5603

6.0
7.0

3.1200
3.2922
3.4478
3.5908
3.7238

2.5106
8.0 2.5831
9.0 2.6471

10.0 2.7047

2.6031 2.6374
2.7057
2.7673

2.6870 2.8401 3.0841
2.7593 2.9253 3.1915
2.8246 3.0029 3.2902

2.6688
2.7278

TABLE VIII-B

Zz VS. r AND W FOR n=6 AND l=&J16

\

w
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

r

0.5026 0.5030 0.5036
;:;

0.5046 0.5078 0.5133 0.5222 0.5361
0.4888 0.4896 0.4909 0.4928 0.4987 0.5086 0.5240

2.5 0.4897 0.4908 0.4926 0.4952 0.5035
0.5471

3.0 0.4940
0.5171

0.4953 0.4976
0.5382

0.5009 0.5112
0.5694

0.5049
0.5281 0.5543

0,5067 0.5097
0.5930

:::
0.5141 0.5280

0.5157
0.5508

0.5179
0.5862 0.6384

0.5216 0.5269 0.5439 0.5720 0.6157
6.0 0.5257 0.5282

0.6802
0.5325

0.5348
0.5387 0.5585 0.5913 0.6427 0.7188

0.5376 0.5424 0.5495 0.5719 0.6091 0.6676 0.7546
!:8 0.5432 0.5463 0.5516

0.5509
0.5594 0.5842 0.6255

0.5542
0.6909 0.7882

0.5600 0.5685 0.5955
1:::

0.6409 0.7128 0.8200
0.5580 0.5616 0.5678 0.5770 0.6062 0.6553 0.7335 0.8502

TABLE VIII-C

Zs VS. 7 AND W FOR n=6 AND l= Am/16

\

w

?’
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

3.1624
3.8392
4.3650
4.8148
5.5807
5.2346
6.8150
7.3422
7.8285
8.2821
8.7088

3.1573
3.8321
4.3565
4.8051
5.5692
6.2217
6.8009
7.3270
7.8124
8.2651
8,6910

3.1488 3.1371 3.1045 3.0604
3.8203 3.8041
4.3424

3.7594 3.7001
4.3231 4.2700 4.2006

4.7892 4.7674 4.7078 4.6307
5.5504 5.5247 5.4550 5.3662
6.2006 6.1718 6.0942 5.9965
6.7778 6.7464 6.6622
7.3022

6.5574
7.2685 7.1786 7.0678

7.7860 7.7502 7.6553 7.5393
8.2373 8.1997 8.1002 7.9796
8.6618 8.6225 8.5188 8.3942

3.0054
3.6284
4.1182
4.5404
5.2645
5.8869
6.4417
6.9474
7.4151
7.8524
8.2646

2.9390
3.5450
4.0245
4.4395
5.1541
5.7703
6.3212
6.8242
7.2901
7.7264
8.1379

TABLE IX-.4

Zt vs. r AND w FOR n=8 AND l= Am/16

\

w

r

1.5
2.0
2.5

0.1 0.2 0.3 0.+ 0.6 0.8 1.0 1.2

1.4666
1.6218

1.4220
1.55’!9
1.6419
1.7070
1.8031
1.8740
1.9304
1.9774
2.0177
2.0532
2.0848

1.4256
1.5603
1.6486
1.7148
1.8126
1.8848

1.4318
1.5694
1.6599
1.7280
1.8287
1.9034
1.9630
2.0128
2.0557
2.0935
2.1272

1.4405
1.5825
1.6762
1.7469
1.8520
1.9301
1.9927
2.0452
2.0905
2.1304

1.5063
1.6824
1.8024
1.8950
2.0363
2.1444
2.2330

1.5627
1.7705
1.9158
2.0301
2.2081

1.6398
1.8945
2.0785
2.2269
2.4644
2.6559
2.8197
2.9646
3.0957
3.2163

1.7256
1.8046
1.9233
2.0125
2.0847

2.3475
2.46401.9424

1. 990.s
2.0318
2.0680
2.1005

2.1456 2.3086
2.3751
2.4346
2.4887

2.5651
2.6551
2.7367
2.8116

2.1986
2.2456
2.287910.0 I 2.1662 3.3286
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TABLE IX-B

Z, VS. Y AND W FOR n=8 AND 1=)wJ16

\ I

\

w
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

r
—-—

1.5
2.0
2.5
3.0
4.0
5.0

0.5215 0.5213 0.5210 0.5207 0.5200 0.5201 0.5223 0.528;1
0.5003 0.5003 0.5005 0.5007 0.5021 0.5056 0.5131 0.5280
0.4938 0.4941 0.4946 0.4954 0.4984 0.5046 0.5166 0.5386
0.4918 0.4922 0.4930 0.4942 0.4985 0.5071 0.5229 0.5513
0.4919 0.4926 0.4939 0.4958 0.5025 0.5149 0.5374 0.5769
0.4940 0.4949 0.4966 0.4991 0.5077 0.5235 0.5517
0.4966 0.4977 0.4997

0.6010
0.5027 0.5130

0.4992 0.5006
0.5317 0.5650 0.6233

0.5029 0.5064 0.5180 0.5394 0.5774 0.6440
0.5019 0.5034 0.5060 0.5098 0.5229
0.5044 0.5061 0.5089

0.5466
0.5132

0.5889 0.6634
0.5274 0.5534 0.5998 0.6817

0.5069 0.5086 0.5117 0.5163 0.5317 0.5598 0.6101 0.6991

6.0
7.0
8.0

1:::

TABLE IX-C

Zz VS. I’ AND W FOR n=8 AND l=&jJ16

\

w
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

v
—.—

1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

2.9464
3.3791
3.6898
3.9416
4.3468
4.6739
4.9524
5.1972

2.9450
3.3781
3.6895
3.94.21
4.3491
4.6779
4.9581
5.2045

2.9426
3.3764
3.6890
3.9430
4.3528
4.6845
4.9676
5.2168

2.9391
3.3739
3.6882
3.9441
4.3579
4.6937
4.9807

2.9289
3.3665
3.6856
3.9470
4.3725
4.7199
5.0183

2.9143
3.3561
3.6823
3.9518
4.3943
4.7587
5.0737
5.3541

2.8954
3.3440
3.6807
3.9619
4.4287
4.8175
5.1564
5.4600

2.8725
3.3327
3.6855
3.9840
4.4865
4.9107
5.2845
5.6222
5.9326

5.2338
5.4616
5.6696
5.8619

5.2825
5.5210
5.7396
5.9421

5.4169
5.6172
5.8018

5.4259
5 6277
5.8139

5.4408
5.6452
5.8339

5.6084
5.8424
6.0598

5.7371
5.9932
6.2324

6.2212
6.4922

TABLE IX-D

Zd VS. t’ AND W FOR n=8 AND l=&/16

\ ,

\

w
0.1

r
0.2 0.3 0.4 0.6 0.8 1.0 1.2

——-—
0.4146 0.4212 0.4304 0.4423 0.4571
0.4439 0.4527 0.4650 0.4810 0.5010
0.4743 0.4850 0.5000 0.5195 0.5440
0.5027 0.5151 0.5326 0.5553 0.5839
0.5533 0.5689 0.5908
0.5974

0.6194 0.6555
0.6158 0.6417 0.6756 0.7188

0.6366 0.6577 0.6873 0.7262
0.6721

0.7758
0.6957 0.7288 0.7724 0.8281.

0.7047 0.7306 0.7671 0.8151 0.8767
0.7349 0.7630 0.8027 0.8550
0.7631

0.9223
0.7934 0.8361 0.8925 0.965;!

0.4106
0.4386
0.4678
0.4952
0.5439
0.5863
0.6240
0.6580
0.6892
0.7181
0.7450

1.5
2.0
2.5
3.0

0.4096
0.4373
0.4662
0.4933
0.5416
0.5836
0.6208
0.6545
0.6853
0.7138
0.7404

0.4123
0.4408
0.4705
0.4983
0.5478
0.5909
0.6293
0.6639
0.6957
0.7251
0.7525

4.0
5.0
6.0
7.0

R
10.0

TABLE X-A

Z, VS. Y AND W FOR n=10 AND l=im/16

\

w

7’

;.;

2.5
3.0
4.0

0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2

.—
1.5173
1.7062
1. 839(II
1.9439
2. 108,?
2.237!9
2. 346!)
2.4419
2. 526!1
2.6044
2.6757

1.3080 1.3112 1.3167 1.3246 1.3485 1.3854
1.3965 1.4012 1.4090 1.4202 1.4544

1.4394

1.4534 1.4589 1.4684
1.5078 1.5878

1.4820 1.5236 1.5893 1.6888
1.4954 1.5017 1.5125 1.5280 1.5756 1.6511 1.7668
1.5567 1.5642 1.5769 1.5954 1.6523 1.7437 1.8858
1.6013 1.6097 1.6241 1. 6+49 1.7092 1.8133 1.9771
1.6365 1.645’7 1.6614 1.6842 1.7547 1.8696
1.6657 1.6755 1.6924

2.0521
1.7168 1.7928 1.9171

1.6906 1.7010 1.7189
2.1163

1.7448 1.8256
1.7124 1.7’234 1.7421

1.9585 2.1729
1.7694 1.8546 1.9952 2.2236

1.7318 1.7432 1.7628 1.7913 1.8805 2.0283 2.2698

5.0
6.0
7.0
8.0

1%:
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TABLE X-B

Zz W. r AND w FOR n=10 AND l=k/16

\

w

0.1 0.2 0.3
r

0.4 0.6 0.8 1.0 1.2

1.5
2.0
2..5
3.0
4.0
5.0
;::

8.0
9.0

10.0

0.5539
0.5277
0.5168

0.5527
0.5267
0.5161

0.5511 0.5467 0.5416 0.5372 0.5355
0.5255 0.5225 0.5199 0.5196
0.5152

0.5251
0.5134’ 0.5127 0.5157

0.5099 0.5090
0.5270

0.5100 0.5159 0.53220.5105
0.5051
0.5027
0.5017
0.5013
0.5013
0.5014

0.5050 0.5056 0.5093 0.5199 0.5446
0.5030 0.5049 0.5108 0.5253
0.5023 0,5052

0.5573
0.5130 0.5309

0.5021
0.5694

0.5060 0.5154
0.5024

0.5365 0.5808
0.5070 0.5180 0.5418 0.5916

0.5027 0.5082 0.5205 0.5469 0.60180.5002
0.5003 0.5008 0.5017 0.5032 0.5093 0.5230 0.5518 0.6115

TABLE X-C

Z, VS. Y AND W FOR n= 10 AND 1= L7J16

\
w

0.1 (),2 0.3 0.4 0.6 0.8 1.0 1.2
?’ ‘\

1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0

2.6911
2.9862

2.692.5
2.9887
3.1874
3.3414
\3.5785
3.7620
3.9137
4.0440

2.6947
2.9928
3.1934

2.6978
2.9985
3,2016
3.3599
3.6049
3.7957
3.9540
4.0905

2.7057
3.0138
3.2245
3.3901
3.6489
3.8521
4.0219
4.1691

2.7152
3.0339
3.2557
3.4322
3.7113
3.9332
4.1204

2.7362
3.0914
3.3522
3.5671
3.9193
4.2094

3.1838
3.3367
3.5719
3.7536
3.9037
4.0325

3.3491
3.5895
3.7761
3.9305
4.0633

4.4605
4.2838 4.4459
4.4297 4.6145
4.5623 4.7687
4.6841 4.9113

4.6845
4.8882
5.0760
5.2510

8.0
9.0

10.0

4.1459
4.2477
4.3402

4.1589
4.2619
4.3557

4.1805
4.2859
4.3818

4.2111
4.3196
4.4185

4.2997
4.4178
4.5258

TABLE X-D

Z, VS. ‘r AND W FOR n= 10 AND l=ie)/16

\ 1

\

v,,

0.1 0.2 0.3 0.4 0.6 0.8 1.0
Y

1.2

Jl—

1.5 0.3918
0.4048
0.4198
0.4339
0.4589
0.4802
0.4988
0.5153
0.5303
0.5440
0 5566

0.3927
0.4060
0.4212
0.4356
0.4610

0.3941
0.4080
0.4237
0.4385
0.4645
0.4868

0.4021
0.4190
0.4373
0.4543
0.4843

0.4221
0.4469
0.4719
0.4949
0.5354
0.5704
0.6013
0.6293
0.6549
0.6786
0.7007

2.0
2.5
3.0
4.0
5.0 0.4826

0.5016
0,5184
0.5337
0.5476
0.5605

0.4927
0.5129
0.5310
0,5473
0.5623
0.5762

0.5100
0.5325
0.5527
0.5710
0.5878
0.6034

6.0
7.0
8.0
9.0

10.0

0.5063I 0.5236
0.5393
0.5537
0.5669

0.6907
0.7226
0.7523
0.7801

TABLE X-E

Z, vS. I’ AND W ‘FOR rt=10 AND l= An,/16

\

w

r \

0.1 (),2 0.3 0.4 0.6 0,8 1.0 l,?

3.4290 3.3504
4.0160 3.9196
4.4982 4.3894
4.9210 4.8023
5.6541 5.5198
6,2882 6.1414
6.8550 6.6976
7.3720 7.2054
7.8503 7.6755
8.2975 8.1152
8.7187 8.5296

3,~61~
3.8119
4.2691
4.6721
5.3743
5.9841
6.5306
7.0302
7.4932
7.9266
8.3354

1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0

:::
10.0

3.5808
4.2050
4.7135
5.1576
5.9249
6.5868
7.1774

3.5731
4.1953
4.7024
5.1454
5.9109
6.5713
7.1606
7.6976
8,1940
8 6576
9.0943

3.5604
4.1794
4.6842
5.1253
5.8878
6.5457
7.1329
7.6680
8.1627
8.6248
9.0599

3.5428
4.1574
4.6591
5.0976
5.8560
6.5106
7.0949
7.6274
8.1197
8.5797
9.0129

3.4941
4.0966
4.5897
5.0213
5.7686
6.4141
6.9906
7.5162
8.0023
8.4565
8.8844

7.7155
8.2130
8,6776
9.11.51
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III. THE IMPEDANCE TABLES

Line impedances for designs having line section

lengths 1=A~/16 are presented in Tables VI to X. (Ref-

erence [15 ] gives tables for .?= A/l 6 and 1= A/32 for ter-

mination ratios r = 1.5 to 20.) In all of these tables the

impedance values are normalized so that

ZIJ = 1, and Zn+l = r (7)

for the terminating line impedances on the left and right,

respective y. Since these circuits are anti metric, half of

the line impedances can be computed from the other

half. For this reason only half of the line impedances for

each design are included in the tables. The remaining

line impedances are easily computed by use of the

formula

r
z{

—— —— . (8)
j=(n/2)+1 to n Zn+l–j

It will be noted that there are tables for the cases of

n=2, 4, 6, 8, and 10 for the case of l= A~/16. For each

value of n there is a separate table for Zl, a separate

table for 22, etc., up to Zniz.

It is thus readily seen that a desired design is obtained

by using the tables of LA, in order to determine the

required value of n, and then selecting the impedance

values for half of the circuit from the corresponding

tables of impedances. The tables give the impedances for

half of the network, and the remaining impedances are

then obtained by use of (8).

IV. CORRECTIONS FOR FRINGING CAPACITANCES,

AND lLf ODIFIC.4T10N OF THE

IMPEDANCE VALLTtiS

The structure shown in Fig. 1 (and equivalent struc-

tures in waveguide) will have fringing capacitances

which occur at the steps between lines of different im-

pedance. The fringing fields at these !Steps may be repre-

sented by inserting lumped capacitances wherever a

junction between lines of different impedance occurs.

Reference [5] or [7] gives data from which the fringing

capacitance values for coaxial-line step discontinuities

can be obtained, and [6] or [7] gives corresponding data

for steps in waveguide. Having values for these fringing

capacitances, the designer can compensate for them by

making small adjustments in the physical lengths of the

various line sections in the short-step impedance trans-

former. Such corrections are important to make if best

performance is to be obtained.

One wayl to compensate for the fringing capacitances

is to replace the short sections of transmission lines in

Fig. 1 by lumped-element equivalent circuits. Figure

3(a) shows a length of transmission line, and the circuit

on the left in Fig. 3(b) shows an exact equivalent circuit

for this transmission line. On the right in Fig. 3(b) is

shown an approximate equivalent circuit for the trans-

mission line which is valid if the line length 1 is small

1 Another way is that given in [4], Sec. 6.08.

x~z .1.8 ~b==.
~“=&

2
CO=*

t < h/a

(c)

Fig. 3. Equivalent circuits for a length of transmission line. The
parameter Z is the characteristic impedance of the line, 1 is the
line length, and v is the velocity of propagation.

compared to a quarter wavelength (say, less than A/8).

Figure 3(c) sho~vs another exact equivalent circuit for

the length of transmission line, and on the right is shown

yet another approximate equivalent circuit, which again

is accurate if 1 is small compared to a quarter wave-

length. For the structures under consideration, the

length of the line sections in the operating frequency

band of interest will be considerably less than a quarter

wavelength, and the approximate 7’- and ~r-equivalent

circuits on the right in Fig. 3 will be useful.

In Fig. 1 and in the other circuit designs tabu Iated

herein, the even-numbered line sections operate pre-

dominantly like shunt capacitors. It is therefore con-

venient to lump the fringing capacitances in with these

line sections. In order to compensate for the added ca-

pacitances due to the fringing fields, we may compute

the capacitance C. in the equivalent circuit on the right

in Fig. 3(c), for each even-numbered line section. Then

for each even-numbered line section we compute a com-

pensated length 1’ by making use of the equation

(9)

where CfL is the fringing capacitance at the left end of

the line section being treated, C$R is the fringing capacit-

ance at the right end, zk is the characteristic imped ante

of the line section, and v is the velocity of propagation.

The third term on the left in (9) will be recognized as

being the shunt capacitance of a length of transmission

line of impedance Z~ and of length 1’. Solving (9) for 1’

gives a compensated length 1’ which is slightly shorter

than the original design length 1.

To summarize, a recommended procedure for com-

pensating for the fringing effects in circuits such as Fig.

1 is to determine the fringing-capacitance values using

[5], [6], or [7], and then to solve for compensated ler~gths

1’ for the even-numbered line sections by solving (9).
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(The capacitance of each line section, plus its fringing

capacitance, will then equal the total desired capaci-

tance for the given line section.) It appears reasonable

to ignore the small changes in inductance that result

from this procedure.

A special case occurs with respect to the fringing

capacitance and that exists at the junction between lines

20 and 21 in Fig. 1. This fringing capacitance may also

be compensated for by a somewhat different technique,

Besides the approximate equivalent circuits shown on

the right in Fig. 3, another reasonably accurate equiva-

lent circuit for a short length of transmission line is an

L-section circuit consisting of a series inductance L. and

a shunt capacitance C. given by the values

L=== (lo)
v

(11)

where d is the length of the section of transmission line,

Z is the characteristic impedance of the line, and v is

again the velocity of propagation. Suppose the fringing

capacitance at the junction between 20 and Zl is Cf, If a

series inductance AL is placed beside this shunt-fringing

capacitance Cf, an L-section circuit can be obtained

having a characteristic impedance which will match the

terminating-line-impedance 2.. In terms of equations

this gives

‘0’ /%= & (12)

Solving for AL gives

AL = CfZo’. (13)

A practical way to obtain the desired inductance AL is

to increase the length of the transmission line 21 by an

amount d, which has the desired amount of inductance.

By (10), the inductance AL for a given value of d and line

impedance 21 is given by

Zld
AL= —-.

v

Solving (13) and (14) for d gives

Vzf’cf
d=—

21 “

(14)

(15)

Thus, in order to compensate for the fringing capaci-

tance Cf between lines 20 and 21 in the structure in Fig.

1 (or in any of the other designs tabulated herein), the

length of line section 21 should be increased from / to

l+d, where d is computed by use of (15).

V. THEORY BY WHICH THE TABLES

WERE OBTAINED

In some respects the synthesis procedure used for

obtaining the line-impedance values in the tables pre-

sented herein is similar to that discussed by Riblet [8]

for the design of Chebyshev, quarter-wave step trans-

formers. In discussing the synthesis procedure used

herein, we will make use of terminology similar to that

of Richards [9], Ozaki and Ishii [10], and Wenzel [11].

The transfer function for a step transformer such as

that in Fig. 1 ~vould involve transcendental functions. In

order to eliminate such functions, and to simplify the

synthesis problem, Richards [9] makes use of the map-

ping function

p = tanh ~ (16)

where s = u +jfl is the complex-frequency variable for

the transmission-line circuit, and P = a+ju is the fre-

quency variable of the mapped transfer function. The

parameter a used by Richards is defined by

(17)

where v is the velocity of propagation, and Q114 is the

radian frequency for which 1= A~/4. In order to apply

the mapping in (16), it is necessary that all of the trans-

mission lines in the structure be of length 1 or of some

integer multiple thereof. Using this mapping eliminates

the transcendental nature of the transfer and impedance

functions for transmission-line circuits, and makes pOS-

sible the use of well-known network synthesis techniques

which are commonly used for lumped-element circuits.

In terms of the characteristic impedance Z of a line

section, s, and a, the open-circuit impedance parameters

for a length of transmission line are given by

z
211 = z~’2 = (18)

tanh ~

z
z~~ = z~~ = (19)

sinh ~
2

After applying the mapping in (16), these open-circuit

impedance parameters become

z
211 = Z22 = —

P
(20)

2<1 – p’ Z<(1 – p)(l + p)
21’2 = 221 ==

P=
~ (21)

P
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These functions look like the open -circuit impedance

functions for a lumped-element circuit in terms of a com-

plex frequency variable ~, except fc,r the fact that the

transfer impedance functions Zlt =, 221 have one-half

order zeros of transmission at @= 1 amd p = — 1. Except

for this square root, the open-circuit impedances in (20)

and (21) would characterize a physically realizable

lumped-element circuit. Because of the nonphysical

realizability of the half-order zeros of transmission in

this circuit, Richards [9] has named the ~-plane equiva-

lent of a transmission line, a “unit element” (abbrevi-

ated U. E.). Thus the p-plane equivalent of the transmis-

sion line circuit in Fig. 1 is the cascade of unit elements

shown in Fig. 4.

Each of the unit elements in the circuit in Fig. 4

contributes to the transfer function, a half-order zero of

transmission at P = 1, and half-order zero of transmission

at P = — 1. Thus, for an n-section circuit of this sort,

there will be n half-order zeros of transrnission at P = 1

and also at @= — 1. In terms of an attenuation function,

the zeros of transmission become poles of attenuation,

and the transfer function for an n-section circuit of the

sort in Fig. 4 will be of the form

12h b.fn + b._@-’ + . . . b@’ + b,pz + b@ + bo
—

En+l – (VI – p’)”

u(p)——
(/1 – p’)” “ (22)

When this transfer function is factored so as to display

the locations of its poles and zeros, it takes the form

EO _ bn(P– PJ(t-PJ “ “ “ (P– P.)
. (23)

En~l – [j<(p - 1)(P + 1)1”

By use of conventional lumped-element-circuit network

synthesis techniques, along with sclme techniques in

Richards’ paper [9], it is possible to synthesize circuits of

the form Fig. 4 so as to have a prescribed transfer func-

tion of the form in (22) and (23).

The next problem to be treated is the problem of

synthesizing transfer functions of the form in (22) or

(23) so as to have a Chebyshev pass band. Let us first

investigate what the frequency response in the P plane

should look like. For frequencies s =jfl, the transforma-

tion in (16) becomes

(2’!)

Dropping the j’s and replacing aQ/2 Iby 0,

u = tan e. (25)

If we apply this mapping to the abscissa scale in Fig.

2, we will obtain a mapped transfer function of the form

in Fig. 5, where the function is sketched also for nega-

tive frequencies –a, for reasons of clarifying some of the

later discussion. Note that application of the malpping

(25) has eliminated the periodic character which the

transfer function had in Fig. 2.

The transfer function in Fig. 5 is in sclme respects

similar to the transfer function for analogous casets dis-

cussed in [1 ], and we shall make use of some similar

synthesis techniques. In [1], the desired transfer func-

tion was obtained by a mapping from the transfer

function of a conventional Chebyshev Iumperl-ele-

ment low-pass filter circuit. The transfer function for

a conventional three-reactive-element Chebyshev low-

pass filter circuit is shown in Fig. 6, where agai u the

transfer function has been sketched also for negative

frequencies. It will be noted that this transfer function

has three ripple-minima when negative frequencies are

included), while the transfer function in Fig. 5 has two

pass bands and six minima when negative frequencies are

included). Therefore, in order to obtain the transfer

function in Fig. 5 from that in Fig. 6, the transfer func-

Ro: 20 4
U.E. u.E U E. LIE

H_-DuuIm

UE

Z2
E, In, = Zz

Z3 z. Z5 26

z
t

I.

Fig. 4. p-plane equivalent circuit of the transmission-line
circuit in Fig. 1.

Q1

7

/,

J“ T
L Al LA(

LAdc

“ A A 1
m -00 0 Wo 92

—-. uJ—

Fig. 5. The attenuation characteristic in Fig. 2 mapped
to the p-plane by mapping Q = tan 0.

—-(of ~!_

Fig. 6. Transducer attenuation of a conventional t@ee-reactive-
element Chebyshev low-pass filter. For mathematical purposes
the characteristic for negative frequencies is also shown.



382 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES AuGUST

tion in Fig. 6 must map into that in Fig. 5 twice. An-

other requirement here is that the multiple-order poles

of attenuation at infinity in the p‘ complex frequency

plane for the transfer function in Fig. 6 must map to

multiple-order poles at p = 1 and P = — 1 for the transfer

function in Fig. .5, as is required by the denominators of

(22) or (23). Some reflection on the matter will show

that a mapping function which accomplishes this is

(26)

where o’ is the sinusoidal frequency variable for the

conventional low-pass filter, u%’ is the cutoff frequency

of the conventional filter, and u is the frequency vari-

able for the circuit of the form in Fig. 4. The parameter

WO is as defined in Fig. 5, and it will be noted that the

point a’= O in Fig. 6 maps to the points co=UO and

w = —UO in Fig. 5. Extending the mapping in (26) to

complex frequencies by inserting P = jw and @‘ = jw’, we

obtain

(27)

The voltage attenuation function for a conventional

lumped-element, Chebyshev, low-pass filter circuit in

terms of complex frequencies p’ is of the form

El
— = Cgp’q+ cQ_lpfel+ ..
E,+ I

~ + c@’+ GO = u’(p’) (28)

and

= Cq(p’ — pl’)(p — p~’) . . . (p’ —pq’). (29)

The corresponding transducer power attenuation ratio

function is of the form

P’
=’ = g’ U’(Z’)U’(– p’)

PL’
(30)

where P’a.ail is the available power of the generator, PL’

is the power delivered to the load, U’ (p’) is as defined in

(28), and g’ is a real, constant multiplier. For sinusoidal

frequencies, the transducer attenuation in dB is given

by

P’ avail

LA = 10 Ioglo —
P’n+l r=~w

(31)

and it is this function which is sketched in Fig. 6. The

corresponding transducer-power attenuation ratio func-

tion for the circuit in Fig. 4 is of the form

P.T.il _ gu(p)u(–p)
(~ – pz)n “

(32)
PL –

It is readily seen that by inserting the mapping function

in (27) into (30), a transducer attenuation ratio function

of the desired form in (32) will be obtained. It should be

noted that the power of the numerator polynomial in

(32) will then be double the power of the numerator

polynomial in (30). As a result, for the corresponding

voltage attenuation ratio functions in (28) and (22),

n=2q.

Closed-form expressions giving the locations of the

zeros of transducer power attenuation ratio functions of

the form in (30) for conventional Chebyshev low-pass

filters are available [12 ]. However, it will be more con-

venient to ~vork with the reflection coefficient function

N’(p’)
F’(p’)= —

u, ~p~ “ (33)

Putting this function in power reflection coefficient

form, we obtain

Prefl N’ (p’) 11” ( – p’)
—— = r’(p’) r’(–p’) = —— (34)
P.V.il U’(p’) u’(-p’)

where P,efl is the reflected power. Closed-form expres-

sions for the location of both the poles and zeros of po~ver

reflection coefficient functions as in (34) for conven-

tional Chebyshev, lumped-element, low-pass filter cir-

cuits are also available [13 ].

By inserting the mapping in (27) into (34), the corre-

sponding power reflection coefficient function

* = r(f)r(–p) =
A’(p) AT( – p)

(35)
aval u(p)~j(–t)

for the circuit in Fig. 4 is obtained. After throwing away

the right-half-plane poles and zeros of this function, and

eliminating any canceling factors that may have been

introduced by the mapping process, the voltage reflec-

tion coefficient function

N(p)
r(p) = —

[T(j)

K(p – jcd.) (p + ju.) (p – jq) (p + jqJ . . .
.

(P– PI)(P– PJ(P-P3)(P-P4) “ “ “

(36)

is obtained. It is of interest to note that the denominator

of (36) has the same roots as does the numerator of (23),

while the numerator of (36) has all of its roots located on

the jti-axis. The voltage reflection coefficient function,

(36), is of most immediate use in the synthesis procedure

so that the formation of the function in (35) may be

bypassed. Thus, only the poles and zeros of (34) which

map to the left-half plane or to the jo-axis are included

in the mapping process. The mapping is accomplished

most directly by solving (27) for p to obtain

p=+
d

j% ’cm’A + p’
(37)

–jwJA + p’ “

Thus, for each pole or zero of (31), (37) will yield two

poles and zeros. From this array of mapped poles and

zeros, we select all of the poles that are in the left-hand

plane, and use them to form (36). Mapping the zeros of

(31) will yield double zeros on the jco axis of the @-plane,

and we select one zero from each of these double zeros to

form the numerator of (36).
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It is still necessary to specify how the parameter A is

to be determined. Now 19. and 8b can be determined in

terms of f?~ and the fractional bandwidth w by use of

()&=o. +

()8.=0,,, 1–;.

(38)

(39)

By inserting (25) into (26), and using the fact that

~’ =UZ’ \when o =Ob, we may solve for .4 and obtain

~ + tan28b
.4=— —

tan26’b— tan2 ~0
(40)

m-here~

6J0 == tan O.. (41)

Since co’ = –am when O=da, by use of (25), (26),

(40), we can solve for tan 00 to obtain

tan 80

d

(tan @b)’ [l+ (tan I%)’]+ (tan 6U)2[1 + (tan Oh)’]
——

2+ (tan e.) 2+ (tan- @b) 2

Using (42) in (40), we may then compute A.

and

(42)

Other transfer-function parameters may be obtained

by mapping from the transfer function for a conven-

tional lumped-element low-pass Chebyshev filter. This

transfer function is

–=1+’c0sh2(’cOs’’-’3’43)
P.~.il

Pouh

where

[

LA,

1e=antilog ~ — 1 . (44)

At the maximum attenuation point in Fig. 2, 0 = 7r/2,
~ = tan ~/2 = a, and by (26), oJ’/w~’ =.4. Therefore,

where the fact that % = 2g has been made use of. The

maximum attenuation L~l is this ratio expressed in

decibels. Equation (45) will also be useful in determining

the constant multiplier K in (36). Since I I’ I is equal to

K ~vhen $ equals j ~,

and by use of (45) and (46), we obtain

(46)

2 Note that 00 is not the same as b’~ (see Fig. 2.)

Using these results the reflection coefficient function in

(36) can be completely specified.

After the reflection coefficient function is obtained

with its numerator and denominator polynomials in

factored form, these polynomials must next be multi-

plied out. Then assuming ZO = 1, the input impedance

function Zi. in Fig. 4 is given by

(48)

Next the circuit is synthesized by removing one unit

element at a time by successive application of (9) cjf [9].

In this manner the impedance values 21, Zz, etc., asso-

ciated with the unit elements in Fig. 4, are obtained, and

these impedance values are also the characteristic im-

pedances of the line sections in Fig. 1. Since the zeros of

the reflection coefficient function in (36) are all on the

ja-axis, the net~vork must be either symmetric or anti-

metric (in this case it is antimetric) [14], and the sec-

ond half of the network can be computed from the first

half. For this reason it is necessary only to compute half

of the impedance values, and the other half can be com-

puted by (8).
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